If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16384=x^2+5x
We move all terms to the left:
16384-(x^2+5x)=0
We get rid of parentheses
-x^2-5x+16384=0
We add all the numbers together, and all the variables
-1x^2-5x+16384=0
a = -1; b = -5; c = +16384;
Δ = b2-4ac
Δ = -52-4·(-1)·16384
Δ = 65561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{65561}}{2*-1}=\frac{5-\sqrt{65561}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{65561}}{2*-1}=\frac{5+\sqrt{65561}}{-2} $
| 3=2h-15 | | 2(x+5)=x−4, | | 4/9(x-5/4)=25 | | k^2+7k+37=0 | | 540=314+2x+10 | | 13=m/2+11 | | 314=2x+10 | | 180-3x+13+11=x | | m-17=12 | | 8(5v+7)-4=164 | | 9(2x+5)=55 | | 25/8•13/4=x | | 8=-4(t-80) | | 8=-4(t—80) | | -8-m=-32-4m | | (2x−14)+(3x−6)=180=0 | | 6(f-91)=12 | | X^2+2x+25=11x+5 | | x/31.5=8/14 | | -9=r/4+6 | | 78/42=10x+5/6x-1 | | 8t-5t+5t-6t=16 | | 5(x−2)+3x−4=−38 | | Y=25.50x+7.50 | | 10u-10u+2u+3u-2u=18 | | 6(b+8)=96 | | p/6+12=-14 | | (2x−14)+(3x−6)=180 | | −3(−x+4)−5x+5=−15 | | 4x+5+2x+8=7x-4 | | -1/2y=-3X3-2 | | 15p+6p+16p=15 |